2024-09-02 21:16:15 +02:00

194 lines
8.9 KiB
Python

import GPIBPrologix
import bme280
import smbus2
from requests import post
import time
from plotly.subplots import make_subplots
import plotly.graph_objects as go
import pandas as pd
import os
import shutil
import csv
basePath = os.getcwd()
postprocjump = 0
## Initialize GPIB adapter
GPIB = GPIBPrologix.ResourceManager("/dev/ttyACM0")
# Connect equipment
#inst2 = GPIB.open_resource(30) # 4805
inst3 = GPIB.open_resource(22) # 3458A
inst4 = GPIB.open_resource(16) # R6581T
# Initialize BME280 temperature/humidity sensor
bus = smbus2.SMBus(1)
## Configure equipment
# BME280 temperature/humidity sensor
calibration_params = bme280.load_calibration_params(bus, 0x76)
if postprocjump == 1:
# Datron 4805 Calibrator
inst2.query("F0=") #DCV
inst2.query("R6=") #10/100K Range
inst2.query("S1=") #RemoteSense
inst2.query("M0.0069=") #6.9mV Out, sanity check
inst2.query("O1=") #OutputON
#Setup 3458A
#inst3.write("PRESET NORM")
inst3.write("MEM OFF")
inst3.write("OFORMAT ASCII")
inst3.write("END ALWAYS")
inst3.write("TARM HOLD")
inst3.write("TRIG AUTO")
inst3.write("DCV 10")
inst3.write("NRDGS 1,AUTO")
inst3.write("NPLC 100")
inst3.write("NDIG 9")
inst3.write("AZERO ON")
# Advantest R6581T
inst4.write(":BEEP:STAT OFF")
inst4.write(":CONF:VOLT:DC")
inst4.write(":SENS:VOLT:DC:RANG 10")
inst4.write(":SENS:VOLT:DC:NPLC 100")
inst4.write(":SENS:VOLT:DC:DIG MAX")
inst4.write(":ZERO:AUTO ON")
# Measurement functions
def readValue(instObj,handle):
out = ""
if handle == "3458A":
instObj.write("TARM SGL,1")
for i in range(10):
out = instObj.read()
if out:
break
elif handle == "6581T":
out = instObj.query("FETch?")
return out
def setValue(instObj, inputVar):
instObj.query("M"+str(inputVar)+"=")
return inputVar
def getEnvironment(instObj, i2cbus):
value = instObj.sample(i2cbus, 0x76, calibration_params)
return value
setValue(inst2,-1)
#inst3.write("BEEP")
print('3458A reading: ',readValue(inst3,"3458A"))
#inst4.write("BEEP")
print('R6581T reading: ',readValue(inst4,"6581T"))
## Have gitpython pull in the repository
import csv
import time
import datetime
import numpy as np
import pandas as pd
from math import sin
## Create logfile
with open(basePath+"/data.csv", 'a') as f:
writer = csv.writer(f)
writer.writerow(["DateTime","SetVolts","RefVolts","DutVolts","Env Pressure","Env Temperature", "Env Humidity"])
print(basePath+"/data.csv")
sweep = np.append(np.linspace(-11.5,11.5,int(11.5/0.5*2)+1), np.linspace(-0.1,0,int(0.1/0.01)+1))
sweep = sorted(sweep)
cntr = 0
d = datetime.datetime.now()
dlast = datetime.datetime.now()
## Collect data
time.sleep(3)
for x in sweep:
cntr = cntr + 1
try:
#Set volt and let accimatize
setPoint = setValue(inst2,round(x,5))
timebetween = (d-dlast) * (len(sweep)-cntr)
dlast = d
print(str(cntr)+'/'+str(len(sweep))+' Estimated Time Left: '+str(timebetween))
time.sleep(60)
for i in range(3):
try:
time.sleep(5)
#Get DUT value
readoutRef = readValue(inst3,"3458A")
readoutDut = readValue(inst4,"6581T")
#Get envirnmental values
data = getEnvironment(bme280, bus)
#Write to file
d = datetime.datetime.now()
dx = d - datetime.timedelta(microseconds=d.microsecond)
fields=[dx.strftime("%d-%m-%y %H:%M:%S"),setPoint,float(readoutRef),float(readoutDut),round(data.humidity,2),round(data.temperature,2),round(data.pressure,2)]
print(fields)
with open(basePath+"/data.csv", 'a') as f:
writer = csv.writer(f)
writer.writerow(fields)
except Exception as e:
time.sleep(15)
i = i-1
except Exception as e:
print(e)
time.sleep(1)
# initialize the image to plot as correction goes
fig = make_subplots(rows=4, cols=1)
## Calculate high order polynomial
df = pd.read_csv(basePath+"/data.csv")
df = df.groupby(["SetVolts"], as_index=False).mean(numeric_only=True)
# compensate for offset error around 0 -> this is cal error instead of INL
df["RefVolts"] = df["RefVolts"] - df.loc[df['SetVolts'] == 0]["RefVolts"].iloc[0]
df["DutVolts"] = df["DutVolts"] - df.loc[df['SetVolts'] == 0]["DutVolts"].iloc[0]
# get 1st order to 10V -> 10V gain error, this is cal error instead of INL, -10 could be due to INL.
# this is heavily dependant on cal procedure, say 7V is the reference calibration point
alphaRef = df.loc[df['SetVolts'] == 10]["RefVolts"].iloc[0]/10
alphaDut = df.loc[df['SetVolts'] == 10]["DutVolts"].iloc[0]/10
# remove 1st order to get the INL
df["RefVolts"] = df["RefVolts"] - alphaRef*df['SetVolts']
df["DutVolts"] = df["DutVolts"] - alphaDut*df['SetVolts']
df["DutToRefVolts"] = df['DutVolts'] - df["RefVolts"]
# plot INL of calibrator
fig.add_trace(go.Scatter(x=df['SetVolts'], y=df["RefVolts"],mode='lines+markers',name='Original REF INL'),row=1, col=1)
fig.add_trace(go.Scatter(x=df['SetVolts'], y=df["DutVolts"],mode='lines+markers',name='Original DUT INL'),row=1, col=1)
fig.add_trace(go.Scatter(x=df['SetVolts'], y=df["DutToRefVolts"],mode='lines+markers',name='DUT vs REF'),row=2, col=1)
# generate correction parameters
# default correction assumed unless minMaxEqual is set, this will equalize error above and under ideal correction
# folding the correction down and up to have a better fit, be sure that measurements were extremely stable to use this
# this block output is to be specifically tailored towards your application, currently R6581T INL adjustment against 3458A
minMaxEqual = 0
correctionfactors = [None] * 16
if minMaxEqual:
# not implemented as of yet
print("not implemented")
else:
# postive part of INL
correctionfactors[0] = df.loc[df['SetVolts'] == 2]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 0]["DutToRefVolts"].iloc[0]
correctionfactors[1] = df.loc[df['SetVolts'] == 4]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 2]["DutToRefVolts"].iloc[0]
correctionfactors[2] = df.loc[df['SetVolts'] == 6]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 4]["DutToRefVolts"].iloc[0]
correctionfactors[3] = df.loc[df['SetVolts'] == 8]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 6]["DutToRefVolts"].iloc[0]
correctionfactors[4] = df.loc[df['SetVolts'] == 10]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 8]["DutToRefVolts"].iloc[0]
# negative part of INL
correctionfactors[5] = df.loc[df['SetVolts'] == -0.02]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == 0]["DutToRefVolts"].iloc[0]
correctionfactors[6] = df.loc[df['SetVolts'] == -0.04]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -0.02]["DutToRefVolts"].iloc[0]
correctionfactors[7] = df.loc[df['SetVolts'] == -0.06]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -0.04]["DutToRefVolts"].iloc[0]
correctionfactors[8] = df.loc[df['SetVolts'] == -0.08]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -0.06]["DutToRefVolts"].iloc[0]
correctionfactors[9] = df.loc[df['SetVolts'] == -0.1]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -0.08]["DutToRefVolts"].iloc[0]
correctionfactors[10] = df.loc[df['SetVolts'] == -2]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -0.1]["DutToRefVolts"].iloc[0]
correctionfactors[11] = df.loc[df['SetVolts'] == -4]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -2]["DutToRefVolts"].iloc[0]
correctionfactors[12] = df.loc[df['SetVolts'] == -6]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -4]["DutToRefVolts"].iloc[0]
correctionfactors[13] = df.loc[df['SetVolts'] == -8]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -6]["DutToRefVolts"].iloc[0]
correctionfactors[14] = df.loc[df['SetVolts'] == -10]["DutToRefVolts"].iloc[0] - df.loc[df['SetVolts'] == -8]["DutToRefVolts"].iloc[0]
# negative 10v voltage reversal alpha error for faster measurements
df = pd.read_csv(basePath+"/data.csv")
correctionfactors[15] = df.loc[df['SetVolts'] == -10]["DutVolts"].iloc[0]/df.loc[df['SetVolts'] == 10]["DutVolts"].iloc[0]
print(correctionfactors)
## Make plot and save
fig.write_image('inl_evaluation_plots.png',width=720, height=1280)
fig.write_html('inl_evaluation_plots.html')
## Read the HOSEI parameters and save the original constants
inst4.write("CAL:EXT:EEPROM:PROTECTION 1")
print(inst4.query("CAL:INT:DCV:HOSEI?"))
with open(basePath+"/original_hosei.txt", 'a') as f:
f.write(inst4.query("CAL:INT:DCV:HOSEI?"))